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Problem 1. [14 Points]

1) Show that the following quadratic forms are isometric [2+4=6 Points]

(a) ⟨1, 1, 1,−1⟩ ≃ ⟨1, 2, 3,−4⟩ over R,

(b) ⟨1, 1,−5⟩ ≃ ⟨2,−2, 5⟩ over Q.

2) Let q be a 6-dimensional quadratic form over a field F with det q = −1 ∈ F×/F×2.
[3+5=8 Points]

(a) Show that if i(q) > 1 then i(q) = 3.

(b) Assume that q is anisotropic. Show that i1(q) = 1, where i1(q) denotes the first Witt
index of q (it equals to the minimal non-zero value of i(qE), where E runs over all field
extensions of F ).
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Problem 2. [6+5=11 Points]

1) Denote by R9 the functon field of the 9-dimensional quadratic form 9⟨1⟩ over R.
Find the Witt index of the form 10⟨1⟩ over R9.

2) Let n ≥ 2. Show that the element x2
1 + ...+ x2

n is not a sum of n− 1 squares in R(x1, ..., xn).
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Problem 3. [5 + 7 = 12 Points]

Let F be a field. Let π be an n-fold Pfister form over F and let φ be an m-fold Pfister form
over F with m > n > 0.
Assume that π ⊆ φ (π is a subform of φ).

1) Show that φ ≃ π ⊗ ρ for some quadratic form ρ over F .
Hint: Use function fields of quadratic forms.

2) Show that φ ≃ π ⊗ π′ for some Pfister form π′.
Hint: Use 1) and first consider the case m− n = 1. Then proceed by induction on m− n.
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Problem 4. [2+4+6+4=16 Points]

Let n ≥ 2 and let q = ⟨a1, ..., an⟩ be a diagonal quadratic form with a1, ..., an ∈ F×. We define
s(q) to be the tensor product over F of the following quaternion algebras⊗

1≤i<j≤n

(ai, aj
F

)
.

1) Show that s(q) is a central simple algebra over F .

2) Let q = ⟨a, b⟩ and q′ = ⟨c, d⟩, where a, b, c, d ∈ F×. Assume that q ≃ q′.
Show s(q) and s(q′) are isomorphic as F -algebras, that is

s(q) =

(
a, b

F

)
≃

(
c, d

F

)
= s(q′) .

3) Let n ≥ 2. Let q = ⟨a, b, a3, ..., an⟩ and q′ = ⟨c, d, a3, ..., an⟩ be two diagonal quadratic forms
over F , where a, b, c, d, a3, ..., an ∈ F×.
Assume q ≃ q′. Show that s(q) and s(q′) are isomorphic as F -algebras.

4) Let q and q′ be two isometric diagonal quadratic forms over F . Show that s(q) and s(q′) are
isomorphic as F -algebras.
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